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By NorBERT WIENER
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§11. Independent Linear Functionals.
§12. Fourier Coefficients and the Average of a Functional.

§1. Introduction. The notion of a function or a curve as an
element in a space of an infinitude of dimensions is familiar to all
mathematicians, and has been since the early work of Volterra
on functions' of lines. It is worthy of note,” however, that the
physicist is equally concerned with systems the dimensionality
of which, if not infinite, is so large that it invites the use of limit-
processes in which it is treated as infinite. These systems are the
systems of statistical mechanics, and the fact that we treat their
dimensionality as infinite is witnessed by our continual employ-
ment of such asymptotic formulae as that of Stirling or the
Gaussian probability-distribution.

The physicist has often occasion to consider quantities which
are of the nature of functions with arguments ranging over such
a space of infinitely many dimensions. The density of a gas, or
one of its velocity-components at a point, considered as depend-
ing on the coordinates and velocities of its molecules, are cases
in point. He therefore is implicitly, if not explicitly, studying the
theory of functionals. Moreover, he generally replaces any of
these functionals by some kind of average value, which is essen-
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tially obtained by an integration in space of infinitely many
dimensions.

Now, integration in infinitely many dimensions is a relatively
' little-studied problem. Apart from certain tentative investigations
of Fréchet! and E. H. Moore?, practically all that has been done
on it is due to Gateaux®, Lévy‘, Daniell®, and the author of this
paper®. Of these investigations, perhaps the most complete are
those begun by GAteaux and carried out by Lévy in his Legons
d’ Analyse Fonctionnelle. In this latter book, the mean value of
the functional U|[x(#)]] over the region of function-space

Slx®]dt<1
is considered to be the limit of the mean of the function.

U@y . . . ., x)=U|I&®]],

. k-1 k
(where E.()=x, for - <t <-;)

over the sphere
2 itx2t . . L Fx,i=n

as # increases without limit.

The present paper owes its inception to a conversation which
the author had with Professor Lévy in regard to the relation which
"the two systems of integration in infinitely many dimensions —
that of Lévy and that of the author — bear to one another.
For this indebtedness the author wishes to give full credit. He
also wishes to state that a very considerable part of the sub-
stance of the paper has been presented, albeit from a different
standpoint and employing different methods, in his previously

1 Sur Vintégrale d'une fonctionnélle ctendue & un ensemble abstrait, Bull. Soc.
Math. de France, Vol. 43, pp. 249-267. = -

3 Cf. American Mathematical Monthly, Vol. 24 (1917), pp. 31, 333.

8 Two papers, published after his death by Lévy, Bulletin de la Société
Mathématique de France, 1919.

4 P. Lévy, Lecons d'Analyse Fonctionnelle. Hereinafter to be referred to
as ** Lévy.” :

s P, ].yDaniell, A General Form of Integral, Annals of Mathematics, Series 2
Vol. 19, gp. 279-294. Hereinafter to be referred to as '‘ Daniell.” Also paper
in Vol. 20. . )

8 N. Wiener, The Average of an Analytic Functional, Proc. Nat. Acad. of
Sci., Vol. 7, pp. 253-26; The Average of an Analytic Functional and the Brownian
Movement, 1bid, 204-298. Also forthcoming paper in Proc. Lond. Math. Soc.
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ed publications. It seemed better to repeat a little of what had
eady been done than to break the continuity of the paper by
e constant reference to theorems in other journals and based on
breatments so distinct from the present one that it would need a
ge amount of explanation to show their relevance.

§2. The Brownian Movement. When a suspension of small
particles in a liquid is viewed under a microscope, the particles
peern animated with a peculiar haphazard motion — the Brownian
movement. This motion is of such an irregular nature that Perrin”

of it: * One realizes from such examples how near the mathe-
saticians are to the truth in refusing, by a logical instinct, to
mdmit the pretended geometrical demonstrations, which are
‘egarded as experimental evidence for the existence of a tangent
it each point of a curve.” It hence becomes a matter of interest
3o the mathematician to discover what are the defining conditions
and properties of these particle-paths.

The physical explanation of the Brownian movement is that it
i8 due to the haphazard impulses given to the particles by the.
collisions of the molecules of the fluid in which the particles are
suspended. Of course, by the laws of mechanics, to know the
motion of a particle, one must know not only the impulses which
it receives over a given time, but the initial velocity with which
it is imbued. According, however, to the theory of Einstein,®
this initial velocity over any ordinary interval of time, is of negli-
gible importance in comparison with the impulses received during

b " the time in question. Accordingly, the displacement of a particle

during a given time may be regarded as independent of its entire
previous history. ’

Let us then consider the time-equations of the path of a particle
subject to the Brownian movement as of the form x=x(), y=y(?),
z=2(f), t being the time and x, ¥, and = the codrdinates of the par-
ticle. Let us limit our attention to the function x(#). Since there
is no appreciable carrying over of velocity from one instant to
another, the difference between x(#) and x(f) [t>?] may be
regarded as the sum of the displacements incurred by the particle

T p. 64, Brownian Movement and Molecular Reality, tr. by F. Soddy.
8 Berrin, pp. 51-54. .
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over a set of intervals constituting the interval from ¢ to #,. In
particular, if the constituent intervals are of equal size, then the
probability-distribution of the displacements accrued in the differ-
ent intervals will be the same. Since positive and negative dis-
placements of the same size will, from physical considerations,
be equally likely, it will be seen that for intervals of time large
with comparison to the intervals between molecular collisions,
by dividing them into many equal parts, which are still large
with respect to the intervals between molecular collisions, and
breaking up the total incurred displacement into the sum of
displacements incurred in these intervals, we get very nearly a
Gaussian distribution of our total displacement.® That is, the
probability that x(4,) —x(f) lie between a and b is very nearly of
the form ’

x?

1 b _ %
V] KM W

-Since the error incurred over the interval ¢ to ¢, is the sum of the
independent errors incurred over the periods from ¢ to #, and from
t; to #;, we have

1 o
—, e (-0
Vet —t)

1 C I LA C o) L
/ e PUrd o) dy
-0

Y -t b(t:—1)

_ 1 _ /w oxp !_[y d(ti—t)+ Pt —1)
TV @ (t1—t)iep (ta— 1) J-oo | Dt —t)P(ta—1)

x| Slt—t)d(t—1) :Ig'_ = ldy
Véu—t) Y bt—t)+dt—1] $li-t)+t-0

x?

g PUWTSED (0 glich) folih
— / e (t—t2) P (ta—t) dy
ﬂ\/(ﬁ(tl—tz)¢(tz—t) -

x2

T Sl T (a0

20

4

Va{ph—t)+dt—1t)}
8 Cf. Poincaré, Le calcul des probabilités, Ch. XI.
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is readily verified that this cannot be true unless

¢(t1‘t)=¢(t1—t2)+¢(tz—t): 3)

$() = Au, &)
nd the probability that x(#;) —x(f) lie between a and b is of the

vhence

1 b . X

—— A-1) dx.

\/-rrA(t,—t)l ¢ ®)
_RT

‘According to Einstein’s theory,”® A = =2 _ % where R is

N 3maf
 constant of a perfect gas, T is the absolute temperature, N
Avogadro’s constant, a the radius of the spherical particles sub-
to the Brownian movement, and £ the viscosity of the fluid
taining the suspension. '

§3. Differential-Space. In the Brownian movement, it is not
position of a particle at one time that is independent of the
peition of a particle at another; it is the displacement of a particle
one interval that is independent of the displacement of the

' ticle over another intervél. That is, instead of f (%), e ey
(-S), -« «, f (1) representing “ dimensions "’ of f (¢), the n

‘quantities
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are of equ:iml wei_ght, vary independently, and in some degree
represent dimensions. It is natural, then, to consider, as Lévy
does, the properties of the sphere

. £l L Hx,=r,2

In particular, let us consider the measure, in terms of the
whole sphere, of the region in which f(a) —f(0), assuming it to
be representable in terms of the x5's, lies between the values
a and B. Now, we have

ne

F@=f0) = D x, ©

1
Hence, by a change of codrdinates, our question becomes: given

that
”
> &=
1

what is the chance that
‘ a S\/n_a f 15 B ?

Letting &=p sin 0, V&,+ . . . +&2=p cos 0, this chance
becomes :

B8

‘ sin-1 ’" \/n_a
, cos"0dd
sin-1

T

/; cos"0d @

) ‘
as has been indicated by Lévy. This may also be written

V1 sin-t B—
Ty Vo
/ s cos”—=d
/7 sin- = dx
V7 sin~t rVas N

11 Lévy, p. 266,
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x2

x . -
w'?, for  large, cos” — converges uniformly to e 2 for |x| < A.
n

may be deduced without difficulty from this fact that the

) 0 8
ategral in the denominator tends to / ¢ 2 dx, which is /27,
-0
to the numerator, if the limits of integration approach limiting
alues, it will also converge. If in particular 7, is a constant,
n since
lim /% sin? —w = 2
7n— o0 T\/ na 4 ‘\/ a
ile a like identity holds for the upper limit, we have for the
bability (in the limit) that f (@) lie between a and 8.

1 Wa % 1 Bo_w
T e %dx= T e %" du. Q)

rv/o

t it be noted that this expression is of exactly the form (5).

We shall call the space of which the constituent points are the
nctions f(#), and in which the measure of a region is determined
the limit of a measure in u-space in the way in which formula
) is obtained from (6), by the name differential-space. The
appropriateness of this name comes from the fact that it is not

f the values of f(f), but the small differences, that are uniformly
distributed, and act as dimensions.

"§4. The Non-Differentiability Coefficient of a Function.
It thus appears that if we consider the distribution of f (@) —f(0)
na

n
=Elx,. in the sphere Zx,2=r?, we get in the limit a distribution
" L

" of the values of f(a) —f(0) essentially like the one indicated in (5).

Now, we have

$-$ [0 (2) |

12 Lévy, p. 264.
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Our result so far suggests, then, that the probability that
] 2

Z { i (E) -f (u) exceed 72 becomes increasingly negligi-
T ) ”

ble as » increases, or at least the probability that it exceed r?by a

stated amount. On the hypothesis that f(t)—f(?) bave the dis-

tribution indicated in (5), and that the variation of f over one

interval be independent of the variation of f over any preceding

interval, let us discuss the distribution of

S -]
(Elearly, the chance that i { f (i) —f (-k—;—1 ) } 2 lie between

n

a? and B?is the average value of a functionof x;, . . . . %, which
is 1 when 12+ . . . +x,? lies between a? and 2, and 0 other-
wise, given that the weight of the region

&<x,<m, (k=1,2,...,n

NIEVARE
1 ]

n (m n -2t
=( _n_) dxy . .. dxy e At ")’ @
TA & £n _

is

as follows from (5). Now, let us put
%1=p siné;
%= p cosb; sinb,

%3 = p cosfy cosb, sinbs

Xp1=pP cOsb cosbe . . . COSOyg SiNG,y

X,=p cosby cosf . . . . c0osf,
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{' 'We shall then have ‘
"‘ p2=x12+ . e s +x”2 } , (11)
'-' dxi. .. dx,.=p"'lcos”'201 cos” 36, ... cosf,odpd: .. .db,

the last of which formulae may be readily demonstrated by an
evaluation of the Jacobian :

axl ax‘ Bxl

ap 96 80,

axz axz 8x2

ap a6 80

ox, Ox, 0%,
ap 86, 80,

Employing a formula of Lévy to the effect that
" 13

7 7
/ ? cos™6d @ / cos” ! 0do= r (13)
° [} 2n

. k E—1\ | *.
we get for the chance that E { f (—) —-f (T) } lie between
. -

n

a? and 32

’ (\I_n—)n/ﬂ ,-"'T"’d i’/’z‘r *od0
—y e « COS

. TA a P P k=12

_1_'_1'_)"2”-2 T T .lr_/pp”‘le-'%)fdp
TA 2(n—2) 2(%—_—4) 4 Ja

if n is even

_ r_n_"n-z m T _71-_/3 n-le'!f'd
_(\H) 2 2n—2) 2n—4) 6J.F P

i n is odd. (14)
13 Levy, p. 263.
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The coefficients of the integral may be reduced in either case to
the form

n

"
wAZ T (_n_)
2

so that the whole expression may be written, by a change of
variable,

" B .
5 (s .
% [ Lo du. (15)
n a
wT (3) Vi

The integrand vanishes for u zero and u infinite. Between

S . .. . -1 .
those points it attains its maximum for u?= nz—. which for
"

large values of # is in the neighborhood of 1/2. It hence becomes
interesting to note how much is contributed to our integral
by values of #? near 1/2 and how much by values remote from
1/2.

Let us then evaluate

2

il
3 .
n /ao un—l e-nu’du,
7T ( d ) ut=li+e '

remembering that the integrand is a decreasing function. Let
us discuss the ratio

n-1 -n{u+1)? n~-1 -n(2u+1)
(w1 =(1+L) .

- —-nu?
nlenu )

u

371—1
<ZE <2
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”

0 2 0 n-1
f un—l e—nu’ du< " Z_;'E (1/2+€) ) e-n(%-l-!)
) wi=dite Trl‘(% k=0

n
X} =
=27 ()24 T KO

1rI‘-7i
2

202 (L LT ek
el-%\/@(z“) o

n-1

_2 [im2a+4297 ex

e T (1_1)52‘—
2

s n grows larger, this in turn may be represented asymptotically
y

‘"'(1'1"25)% _11'_ €

“,NOW, ¢*>1+2¢ as may be seen directly from the Maclaurin

" series for ¢*. Hence (19) may be written

K~n-2C"

f* where K is a constant and C is a positive constant less than 1.

is, of course, tends to vanish for = large.
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We may prove in a similar way that
”
ne

./ Wb et e g,
T (_n_) 0
2

tends to vanish for # large. Clearly, for # sufficiently large,

n-l1 will be greater than 1/2—e. Under these circumstances,

”

n1
2

2 %= 14_¢ n 1
n / Y un—l e—"u’ du _<_—n (E_e) e—n(%«)' (20)
mr(2) /e 2rr(2)
2 2

2
2

This latter quantity is asymptotically represented by

L 1
n2 (i —e)% )
” n
S ER N e

2
- 2y
1 n—2 (1—2¢)2 e
N 2me T

This is in turn asymptotically represented by

n

2n(1i2€)% \/7‘1;2[(1-,2‘) ez']y. 22)

C o 62

Now, since by Taylor's theorem with remainder, ¢ % =1—2¢+ 3’
6 being a positive number less than 2e, we get (1 —2¢)e* <1.
Hence expression (22) is again of .the form KVn—2 C”: C being
a positive constant less than 1, and approaches zero as » increases.
It will be seen, then, that for # sufficiently large, the chance

n 2 .
that ? {[ S (-}E) —f (k%l) ] diverge from A/2 by more than €is
1

n

less than an expression of the form K\/ﬂ—Z C" in y‘vhich K
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bt C are positive constants independent of n, and C<l. It
Mlows that for # sufficiently large, the chance that any

[ (F k—1 1 ?
Wi ('—) -f (——) differ from A/2 by more than €, for N
N N |

kge, is less than
™ -

K Z VN=2CV,

is the remainder of a convergent series, and hence vanishes
n becomes infinite. In other words, the chance that

el By =1y )
lim (_)_ (;) —4/2|>€
i 2 6)-/ () | el
less than any assignable positive number, if € is any positive
Bantity.

t f({). be a continuous function of limited total variation T
een 0 and 1. Then clearly

Q=) ) el ()11 )
ST (O ()

n—e 0 1 L V]

3O ] -0 e

will in particular be the case when J(t) possesses a derivative
dounded over the closed interval (0, 1). Hence it is infinitely

fitnprobable, under our distribution of functions f(®, that f(r)

be a continuous function of limited total variation, and in particu-
that it have a bounded derivative. We may regard

: . .
lim { f(f) - f(k;l) } as in some sort a nondifferentiabil-

coefficient of f.
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§6. The Maximum Gain in Coin-Tossing. We have now
investigated the differentiability of the functions f(#); it behoves
us to inquire as to their continuity. To this end we shall discuss
the maximum value of f(f)—f(t,) incurred for ¢,<¢<t, and shall
determine its distribution. As a simple model of this rather com-
plex situation, however, we shall consider a problem in coin-tossing.

A gambler stakes one dollar on each throw of a coin, which is
tossed » times, losing the dollar if the throw is heads, and gaining

it if the throw is tails. At the beginning he has lost nothing and

won nothing; after m throws he will be k, dollars ahead, k,
being positive or negative. The question here asked is, what is
the distribution of the maximum value of k,, for m <n?

Let »n throws be made in all the 2" possible manners. Let

A, (p) be the number of throw-sequences in which max (&,,) = p. .

Clearly A,(—p)=0, if p is positive, since ky=0. Furthermore,
any throw-sequence in which the maximum gain is zero consists
of a throw-sequence in which the maximum gain is either 1 or 0
preceded by a throw of heads. That is,

A,0)= An1(0) +Ana(1). (25)

A throw-sequence in which the maximum gain is p>0 consists
either of a throw-sequence in which the maximum gain is p—1
preceded by a throw of tails, or a throw-sequence in which the
maximum gain is p+1, preceded by a throw of heads. That is,

An(p) = Apa(p— D+ Apa(p+1). (26)
Let us tabulate the first few values of A,(p). We get
Aup) | n=1 2 3 4 5 6
p=0 10 20
1 10 15
15
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‘will be seen that the various numbers in the table are the bi-
prial coefficients, beginning in each column with the middle
cient for # even and the next coefficient beyond the middle
n odd, and with every coefficient in the expansion (a+n-

¥epeated twice, with the exception of the middle coefficient for
8 even. That is, as far as the table is carried, we have

(2n)!
(n+p)! (n—p)!
2n+1)!
(n+p+1)! (n—p)!

e may then verify (25) and (26) by direct substitution, thus
oving that the values given for A,, (g) in (27) are valid for all
es of m and q. ’
Let us now consider a series of # successive runs of # throws
, for points of 1/r/m dollars, m being even. The chance
at the amount gained in a single run lie between a and 8 dollars
then g'vm
1/27 " Bu(h), (28)
; a'Vm
where a’«/m is the even integer next greater than or equal to
@’'/m, B'/m is the even integer next less than Bv/m and
Bu(k)/2™ is the chance that of m throws of a coin just kB more
ghould be tails than heads — that is,

m!
m—k, mtk,
2 2
If we begin by assuming & and B positive and less than ¥, expres-
sion (28) will lie between the values

(B'—a)vm m!
) ()

Ann@) = An@p~1)

@7
A2 11(20) = Agu 1 (2p+1) =

B (k)=

and

BU=a)/m m! _
), (),
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Now, by Stirling’s theorem, we have uniformly for a<ly, ﬁ<7

lim (B'—a'm m!
mw 2™ (m—xg'w:)! (m+/g'\/z)!

= lim (B—a)v/'m  m™e™/2um
m—wn ” - /— M—ﬁj ) m Vm —_—
PAS (m_ﬁix m) P (m_—+§\/ ) Ty m?— By

% ) (e

. — jud — BVm — m
= lim §2=:(1—Bz/m)2 (1—B/v'm) 5 (1+.3/\/m)'%

m— 0

B-a -
m-—=et. (30)
V2T
‘We have, then, for m sufficiently large, by combining (30) with
an analogous theorem,

B . 8'Vm B—a -2

= ¢ 2 <]/2™ (k) < —=—=e 2
v /2 ;B < ==r". (31)
. a’'vm
Moreover, since (30) holds uniformly, the value of m necessary
to make (31) valid depends only on 8—a.

Now, let us divide the interval (a, 8) into the ? equal parts
(@, @), (@, @z), . . . , (a,y, B), and let us choose m sufficiently
large for us to have over each interval

a“pq1Vm o

Bm (k) < Ll——a‘ke-z_ ’
o \ 2w

a k m

where @’ A/m is a;\/m if this is an even integer, or otherwise

the next larger integer, and a,''v/m=a;/m—2. Then we have

atp iy 8'Vm

1 Betan ,,,
T Z(ak+l—ak)e z‘<1/2 Z B (k)

a'V'm

' >I = ‘ a%y
LS— Api1—Qy) e 2,
\/211_2( k41 x) €
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x2

here the value of m needed depends only on @, —a,. Since ¢” 2

a decreasing function, we hence have
B8'Vm 2 2
1 /‘5 = ’ v R R4
— e 2 dx—1/2" B.(Bi<—=—max (¢ 2 —e¢ 2
7 ). /2" 2 Ball)| < 7 max ( )
< \/';'%r;(ak+l_ak)v (32)

here a minimum value of m may be determined in terms of
8'Vm

* @y4+1— @ alone. In other words, 1/2™ Z B,.(k) converges uni-

a'Vm

formly in a and B to »
1 B _x

ht— e- E-dx'
\/271' a

j provided only a and B are positive and smaller than y. It is
. obvious that the requirement of positiveness is superfluous, if

onlylaj<y, |Bl<y.

This last restriction can be removed. In the first place

(m—F)! (m+k)!
(m—2k)! (m+2k)!

_(m—2k+1)(m—2k+2) . . . (m—k)
(m+k+1) (m+k+2) . . . (m+2k)

<(m—k)"'
m+-2k/
If now k> 1 /m, we have

Ba(28)/Bll) < ( \‘//g; 1) " (o- \/—%) e,

Bn(2k)/Bu(k) =

for k<m. If k>m, we have clearly

Bu(2k) = B,,(k) =0.
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Hence in general, for all k> i\/m,
B (2"F) <e™ B, (k).
It follows that by making 7y sufficiently large, we can make

Vom
1 . . ~I =21
5,—,.2; Ba(k) <—Z Bu(®) (Ie'+e™ + . . .
y'Vm
1 &
<2 B (35)

where y'A/m is the integer next larger than y+/m and [ is in-
dependent of m. The result is that

lim —-Z Bn(k) =0 (36)
v vVm

uniformly in m. Hence if we consider

1 8'Vm
Zd 12m+l B.(k 37
\/2,,/ Y zv;n n(®) (37)

we may first choose 7 so large that the difference in this expression

made by replacing a or 8 by=, in case they lie outside =y, v,

is less than €/2, and then choose m so large that within the region

(=9, ), the expression is less than €/2. That is, by a choice

of m alone, independently of a and 8, we can make (37) less than €.
Now let us write

g'Vm

i D Bul® =$u(8)

or /:e‘dx -4 J

Clearly, the probability that the maximum amount won for any
value of k at the end of the first km throws out of mn for v/ m

1/2"'"2Am,, W=12m" %
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each lie between 0 and # will be the Stieltjes integral
Bkpression

—X1—%2 —X1= X7 =X

I puten [ Capate) [ adaed . [ aate

X=X — X n-1

+ / iputed [ iatea [ abutod . [ abute
IR

—X1=Xa= o= Xyy]

- / dn(x) -éqb,,.(xz) dpnz) . .. / _ du(x

n+x240

+ [) +0d<l>,,.<x1> | / e / Lodd),,,(x-s‘ -

+ / aated) [ bz . . L. by, (39)

nsisting of 1+1+4+2'4+3!+ . . +#u!terms. If in this expression

e substitute ¢ for @, it results from what we have just said of
Jthe uniformity of the convergence of ¢,, to ¢ that the expression
obtain will be uniformly the limit of (39). This expression will
present the chance that after » independent games, in each of

‘which the chance of winning a sum between a dollars and
x2

2 dx, the maximum gain incurred lies between

0 and u. We shall denominate this quantity G (u, »), and expres-
sion (39) Gu(u, n).
It is obvious from the definition that G (u, #) is more than

'V E=u'Vm
~ . mn!

= (mnz—k)! (mnz-i-k)!’

(40)

3where u'/m is the integer next larger than uv/m. By going




150 WIENER

through an argument precisely analogous to that by which (32)
was obtained, we see that

im 1/ S = NI [T
E[
G (um)> \/ % j . 42)

§6. Measure in Differential-Space. To revert to differential-
space, let us consider a functional F|f|, f being defined for argu-
ments between zero and one, and let us see if we can frame a
definition of its average. To begin with, let us suppose that F
only depends on the values of f for the arguments ) <ts, . . . <l,.
F will then be unchanged if we alter f to any other function,
assuming the same values for these arguments — in particular,
to a step-function f,(f) with steps all of length 1/v, v being suffi-
ciently large.

Let us now call the difference between the height of the kth
step and that of the (k—1)st by the hame %;,. We shall then have

Flf,|=F(f,(), f(8), . . . F(tw)
=F+xnt . . . +rp, mtnt+ o . 0 +2n, . .,
n+x+ .. -+xTn)r (43)

where T, is vt if this is an integer, and otherwise the next smaller
integer. Now, the region of the space (x1, x5, . . . , %, which
corresponds to differential-space is the interior of the sphere

ol+xit . . tx,i=r

Over the interior of this sphere we may take the average of
expression (43), let it approach a limit as v increases indefinitely,
and call this limit the average of F in differential-space.
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By the change in codrdinates

. +xT1 =\/E§1
. +'xT, =V Tz‘"Tlfz

—l+1 + PO -+xT” =V Tn_Tn—lfm

., &, represent coordinates orthogonal to &, ... £

n+l - ¢

change our sphere into

A e

d have also
F[frl =F(\/-]Tlfla \/T2_ Tl 62; sy
y a transformation like (10), this will become

Flf,| =F(VTyp sin 6, V' To— T p cos 6 sin 6,

\/ Tn-' Tn—l n)-

. NTy=Tpipcosby . . . cos 6,_.8in 6,).

The average value of this over our sphere is

/;lp/i ae, . . / d0,_1p 05”2 0, cos” 2 02 . . . coS 0,3
o "J-3

F(WT,psin 6, . . ANT,—T,pcos by. . .sin b,

v

2
f' 2,, déy,. . ./, de,; p"‘l cos"2 6, .. .cos 0,2
o J3 "z

/dp/ do, . . / do,p "t cos2 8y . . . cos”™ 9,

F('\/Tlp sin 6, ... ,\/T—T,,_]_PCOS 6. .. sin 0")

= 2 )
f'dp fi de, . . .f,do,p"'lcos"’zol .. .cos"™ e,
o " JF -3 |
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oV Vy
r 2 2 u
ap | .y7du . - . [ .5 du,,p"_lcos"_2 L.
g = v

14

Uy

\/v,... in—=

— u N
F(\/Tpsin V—‘; ooy Ty=T,, pcos

Vv vy
m

r 2 2
d _du, . . . / du,p” cos’Z—=. . .
Iy oo g LA

(45)

If we now consider the integrands in the numerator and the
denominator for |um|< U, . . ., |u,| < U, and let v increase
indefinitely, we see'® that

) W Uy, _ n
lim cos*? —=. . . cos"" ' —=F(\/T,psin—=
Jim eos™ 7 v, FWTipsn

Ur

NTy—Tyap cos 7=

2

TF oV, . . oy Pk ta—te),  (46)

W

i Mn _ ZF T (47)

N o U1
lim cos"?=%. . . cos ¢

VAV
uniformly, provided only F is continuous. If in addition F van-
ishes for |w|>U, . . ., |Ual>U, we have for the limit of

the expression in (45)

w2 uy,?

r % ®© n
/ p"'ldpf duy . . / du, e 22
] -0 -0

F(P“l\/g» c e e Pun \/tn—tn—l)

w02 U2

fp"“dp/ du, . . f du,e 27T
1} -0 -

14 Cf. note 12.
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s will be the case even if F has a set of discontinuities of zero
sure, provided F vanishes for lm|>U, . . ., [Ua>U,
ven, as may be shown without difficulty by a limit argument,

Brovided merely that |F|is bounded. It follows at once that,

ander these conditions, the expression in (45) becomes

0 U2
du; . . / du, e 2
-0
0

/ du1 P
o 2
./du”e_?-.“

F(m;\/t_l, o Nt t)

2
Uy
2

F(ml\/ t—;, RN ru,V t“—t,_l)

” __1_ 0 (3
B (27) 2 7 (02— t) - - - (ty—tu-1)] 2 f dyn . . . /Mdyn

S e
> = FOuy - ) 48
0 2t It (O In) (48)

%o being zero. In particular, if F O, - -+« - y.) is 1 when

< n <y
1 < <
Ya1 Ve Y22 ( 49)

Y < Vn < Im2

*“we get for the average value of F

n 1 e s
(2‘"’)—? f_"[tl (ta—tl) PPN (tn—t,,..l)] 2 f dyl P / dyn
n Im

n yk2
—_ . 50
exp Z 2 (e—tet) (50)

“This we shall term the measure or probability of region (49).




154 WIENER

§7. Measure and Equal Continuity. Let us now consider all
those functions f() (0<t¢<1) for which f(0)=0 and which for
some pair of rational arguments, 0<1,<#:,<1, satisfy the ine-
quality

1
If ) —f@) | >ar(a—t) 2 . (51)
If this inequality is satisfied, we can certainly find an % such
that
’f—_‘}ﬁtlfifhﬁk—ﬂ,tz—h?_l/”, (52)
n n ”n
while the variation of f over the interval k—_—l ) kt+1 ) will exceed
n ”n
1 .
ar(a—1)% *. That is, the class of functions satisfying the ine-
quality (51) is a sub-class of the class of functions for which the
- el
variation over some interval (l_e___l , %) exceeds% n" % . Now,
n
every such function must have either the difference between some
_ 1
positive value in the interval and its initial value exceed Lt

or the difference between its initial value and some negative value

a -
in the interval must exceed Zr n 2.

To discuss what we may interpret as the measure of the set of

functions (51), we may hence investigate the measure of the set.

of functions which over an interval of length 1/ depart from their
initial value (for some rational argument, be it understood) by

1
more than ‘Z— n "2 . Now, if we subdivide the interval of length

1/n into m parts, each of length 1 /mn, the probability that in
a given one of these sub-intervals the total difference between
the initial and the final value of the function lie between a and B
is, by (50) :

€ 7 gy (563)

’\/7—71; /ﬂ _mnx’
Vomle
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yce the probability that the maximum difference between the
we of f at the end of one of these sub-intervals and its initial

1
e be greater than iﬁ #n 2 is by (42) less than

' L nx?
_1_\ ’grf./ ¢ 7 dx
r T 1;,,«%

9., @. - Ef 2¢ 22,02
< .}_J?ﬁ\/ e o dx (for ."f.‘f_'
r T {;_',,e—% 16

ntar
4

(54)

will be true no matter how largem is. Hence those functions

which the maximum difference between f (ﬁ + i and
n

mn
) is greater than % n*%, | being an integer not greater than

which is any integer whatever, can be included in a denumerable
f regions such as those contemplated in the last section, of
nar
measure less than ——— ¢ 4 . If nowwelet k vary from 1
rmw
, we shall find that those functions whose positive excursion in

for some rational argument exceeds

. n n 2 nar
-n"¥ will have a total measure less than " _ ¢ ,inthe sense

N

that they can be included in a denumerable assemblage of sets
able in accordance with the provisions of the last section,
d of total measure less than this amount. If in this last sentence
replace the words * positive excursion ”’ by the words * posi-
or negative excursion,” we get for the total measure of our
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r
set of functions a quantity less than 2n_ e 4 . It follows

r’vm
that all the functions satisfying (51) can be included in a denumer-
able set of regions of total measure less than

» near

2 -
LS o

1

This series converges if a has a sufficiently large value inde-
pendent of #, as may be seen by comparing it with the series.

2 17
v Z ()

which converges for a sufficiently large. Moreover, if (55) con-
verges for a =a,, we may write (55) in the form

2 & _ar 2 S ~xar wa-ayr
= E nte * = = E nte * ¢ %
72\/71- 1 » 1’2\/71' 1
(ai-a)r

[72\/7‘_2112 _] =

for a>a,. Hence we have

«© ntar

\_2/_ ST =0 (57)

That is, by making e in (51) sufficiently large, the functions satis-
fying (51) may be included in a denumerable set of such regions as

those discussed in §6, of total measure as small as may be desired.

Let us now consider the sphere
0 .. Fx2=r2
and on this sphere, a sector subtended at the center by a given
area of the surface. Let us cut off a portion of this sector by a
concentric sphere of radius 7, <r, and let us measure the volume
of this new sector in terms of the sphere of radius . Let us com-
pare the quantity thus obtained with

n n o (x4 ... +x,)n
(@m) Tyt / PO / by o g
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integral being taken over the same sector. The ratio between

e two quantities may readily be shown to be

,-,.(@),
._3_ / ; p""l dp
w2 o

(2m) 22 f e
prie T ap
0

G >/"”

41 \’n

Y [P

»
ce ¢ 2 is a decreasing function, we have

14} \’n

G

m/n

GY [T

G [
GF [
(”2“?".
OIS
(5):
i6; (-‘1)
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Hence if we consider a region of the sphere =x,2=7r2 bounded by
radii and the sphere Zx,2=r,2, its measure in terms of the volume
of the sphere Zx,?=r? is greater than its measure as given by an
expression such as (58). In this statement we may replace the
sphere Zx2=r? by any region such that if it contains a point
(®, . . ., x,) it contains (6x;, . . . , 6x,) (0<60<1), since
such a region may be approximated to w1th1n any desired degree
of accuracy by a sum of sectors. It hence results that the measure
of all the points in Zx,2=72 but without such a region is less than
the measure after the fashion of (58) of all the points without
such a region. We may conclude from this fact and (57) that
in the space Zx,2=r?, the measure of all of the points (xy, . . s %)
such that for some k and l> k,

x, >a r(l k)_" . (61)
BtL

vanishes uniformly in # as a increases.

§8. The average of a Bounded, Uniformly Continuous Func-
tional. Let F |f| be a functional, defined in the first instance

k k+1)

for all step-functions constant over each of the intervals (
n n

for some », and having the following properties:
() F|f|<A for all f,
(2) There is a function ¢(x) such that
lim ¢(x)=0,

z—>0

and

| FIfI=F |f+g| | <¢(max [g]).

We shall speak of the function F (xy, . . . , x,), which is F |f,],
where

k
f,,(t)=2x,- for k—;l<t_5§

)
7 n

as the nth section of F |f|. I say that for any functional F |f|
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jatisfying (1) and (2), the average of the nth section over the
n

here Zx,2=r? approaches a limit as # increases indefinitely,
1

hich limit we shall term the average of F |f|.
To begin with, let us have given a positive number 7; we shall
nstruct a value of # such that the difference between the aver-
es of the nth and the (n+p)th sections of F is always less than
First choose a so great that the measure of the points in
B <r? satisfying (61) is for all # less than 1/2A. Next find
& number ¢ so small that

P arf’ ) <n/4. ' (62

vide the interval (0, 1) into portions of width no greater than
. and let ¢, . . , ¢, be the boundaries of these intervals. Let

Yt =1(tn) <t <tns1),
GlfI=FI¥|.

f%l.nd let

I Form the average of G as in §6, and let #» be so large that this
i average differs from the average of

GClatmnt . . . tor, mtmt . o twn, o ..
D e R A b
by less than 9/4. Then it is immediately obvious that the differ-

ence between the averages of the nth and the (n+p)th sections
! of F is less than 2¢. In other words, the average of a functional

-' satisfying (1) and (2) necessarily exists.

An example of such a functional is
1

1 .
1+ / [f(2) %

Another method of defining the average of a bounded, uni-
formly continuous functional F is as

5 n [ 00 _ (x4 +x,n
lim (27) 27"' n2/ dx . . / dx, e 2r Flxy, . . ., x,).
%—» 0 —0 -0
(63)

15 Cf. (43).
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There is no particular difficulty in showing the equivalence of
the two definitions with the aid of (567). A fuller discussion of
this definition of the average of a functional is to be found in the
papers of the author which have been already cited. It is easy
to demonstrate, as the author has done, that the division into
parts that are exactly equal plays no essential rble in definition
(63), and can be replaced by a much more general type of division.
For the average of F |f| as here defined, we shall write

A{F}. (64)

§9. The Average of an Analytic Functlonal Let F|f| be a
functional such that:

(1) Given any positive number B, there is an increasing
function A(B), such that if

max |f(t)| <B
then
| FIfl |<A(B).

(2) Given any positive number B, there is a function ¢(x)
such that
lim ¢(x)=0,

x—0
while if ,
max /()| <B, max [g(#)| <B
then
| FIf|=Flg| | <¢(max |f—g).

Let us write
Fylf|=F|f| for max |f()| < H

, A
F =F|—"
alf ax |10

Fylf| is clearly bounded and uniformly continuous, and as such
comes under the class of those functionals which have averages
in the sense of the last paragraph.

Let us define for any functional G|f| the function G(x;, . . ., %x)
as in the last paragraph, and let us write A,”{ F } for the average
of F (1, . . ., x) over Zx, =72 Let H and K> H be any

%or max |f()|> H (65)
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Edwo positive numbers. Clearly by (42) and the argument which

ows (60), the set of functions for which max |f({)|> H can
enclosed over Zx,2=72 in a region of measure

2\/2] o

x| <4 \/2 / S dx AK).  (66)

b In particular, if <1

|A"{Fr} — A {Frye) |<—\/2f ¢ dy A(H+1).

Hence if K— H <m, m being an integer, we have

A Fa}—Ar{Fy)] <2 \/32/ e 2% dx A(H+i+1).
4 m 1 H+$

(67)

e It follows that if

A(p+1)/ ¢ 2" dx
lim

pme A(p)/ ¢ £ dx

then
lim |A,"{Fu}—A"{Fx}|=0 (69)

Hown

uniformly in # and K. This will be the case, for example, if A(p)

'is a polynomial in p, or is of the form a’. Under these circum-

stances
lim A" {F} = lim lim A"{Fg}

n—>®0 n—>w H—w

= lim Lm A"{Fg}= lim 4,{Fg}

H—o® n—w H—®




162 WIENER

exists. We shall call this quantity A,{F}. There is no difficulty
in showing that formula (63) holds in this case also.
Now let us have an F|f| of the form

1
FIf] =at / K@/ Odi+ . . |

1 1
+/;dtb . .jdtnK”(tl,. SREFR ) £CY IR £ (% B S

(71
given that

Aw)=ay+u lllk’,(t)]dt.;. L
+un[1dtl .. ,.[ldtan,,(tl, c e, tn),+ L. (72)

exists for all » and satisfies (68). Then if
max f|(#)| < B,

we have as an obvious result that (1) at the beginning of this
section is satisfied. Moreover

FI1=Flel1<| > [fan ..

1
/) Kot - G - . ) ~el) . . gt)]

® 1 1
< >
< Z[dt,. : .Adtnlhn(tl,. Y

X { [max|G() | +max|f(x)~ g(x) | I~ [max | g(x) | I"}
o (73)
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; f max lf(x) | <B, and max |f(x)—g(®)| <€,

3 d 1 1
b [FIf|—Flgll< Z[(B+e)”—B"]/) dn, [) dta| Kaults, . . ., 1,)|
1

d Bte 1 1
=> / ny™! /dtl.../dt,,]K,,(tl,...,t,,)[
1 B Jo 0

i 1 1
n-1 wl Ka(ty, ..., 8)].
< Zlen(B—l—e [;dtl Adt | Ku(ta )|

. , (74)

:‘Series (74) converges for all €, since series (72) has a convergent

derivative series. Hence condition (2) may be proved to be
tisfied. In other words, F|[f| has an average in the sense of

this paper. . . _
This result may be much generalized without any great diffi-

‘eulty. It may be extended to functionals containing Stieltjes
ategrals such as

N (X5 0 X (. e,
(75)

® 1 1
”n ” 16
ul A [d"Q@, . . . )] (76)

1

- exists for all # and satisfies (68). This class of functionals includes

" such expressions as

111
1 A A Lf@]™ [f(tz)]" [f@))P K (ts, ta, ts) dt, dty dts.

18 Cf. Daniell, Functions of Limited Variation in an Infinite Number of
Dimension, Annals of Mathematics, Series 2, Vol. 21, pp. 30-38.
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On the other hand, A(%) in (72) may be replaced by

ao+Vu \/ l l[K,(t)]’dt + ...

+ w2 \/[...Aldtl. LA K, . o, Y ()

the K's being all summable and of summable square, and by the
use of the Schwarz inequality, (1) and (2) may be deduced.
Again, we may under the proper conditions concerning ¢ show
that

has an average in the sense of this paper, if /1, . . . , F, are
such functionals as we have already described.
I here wish to discuss only such a functional as

1 1
Flfl=‘/0 . .‘[[f(tl)]m. e [f(t.)]“"K(tl, R A X A

The average of this functional will be the limit as » increases
indefinitely of

n i R n o ® (24t 2O
z E @m 2r'n 2/ dx . . / dx, e 2
=1 k=1 e -

(x1+. . .+x,,,)'“. . (X1+ . .+xkv)“"

)

ﬁidzl. .. A dt, K, . . ., 1)

n n

1 4

Z @m” 2 "nt
[Bi(ka—F1). . . (b~ k)|t

e PR _—.___fv'"
[ °odfl e 212k,
EE+&™. .. 4. .+
h .

k=1

ky

’fz:ldtl' .. -kil_dt,,.K(tl, A
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ﬁecause of (63). Expression (80) clearly approaches the limit

" @) 2r”
.[;dtl. / dt,K(t, ... 1ty ot . . G mrt

fdfl ./—wdg oxp (21211 2r (¢, —t,_l))

mEFE™. . G+ . . HE™ (81)

provided that K is of limited total vanatxon This agrees with a
definition already obtained by the author. ™

§10. The Average of a Functional as a Daniell Integral.
Daniell'® has discussed a generalized definition of an integral in
the following manner: he starts with a set of functions f(p) of
gmeral elements p. He assumes a class T, of such functions
which is closed with respect to the operations, multiplication by

a constant, addition, and taking the modulus. He also assumes
that to each f of class T, there corresponds a number K, inde-
pendent of p, such that

/<K,
and that to each f there corresponds a finite “ integral ” U(f)
having the properties

©) Ue() =c U(P),
A4) Uh+f)=U{+ U,

n I h2f2 . >0=lim f,, then
lim U(fy)=0,

(P) U(hH 20 if /20.

There is no difficulty in showing that if T, be taken as the set
of all functionals F such as those defined by (1) and (2) of §8,
and the operator A, is taken as U, all these conditions are ful-

17 The Average of an Analytic Functional, p. 256.
18 Daniell, p. 280.
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filled save possibly (L). I here wish to discuss the question as to
whether (L) is fulfilled.

Let it be noted that (L) involves the knowledge of those entities
which form the arguments to the members of Ty. Up to this
point we have regarded the arguments of our functionals F as

" step-functions. However, if F|f| is a bounded, uniformly con-
tinuous functional of all step-functions constant over every interval
e=1k
n
f’f a sequence of such step-functions f,, then lim F|f,| exists, is
independent of the particular sequence f, chosen, and is bounded
and uniformly continuous. We shall call this limit F|f|. This
extension of the arguments of F does not vitiate the validity of
any of the Daniell conditions. In fact, no condition save possibly
(L) is vitiated if we then restrict the arguments of our functionals
of T, to continuous functions f(f) such that f(0)=0.

We wish, then, to show thatif 1> F.> ... >0=Ilim F,, for

every f that is continuous, then N

lim 4,{F,}=0.

Let us notice that it follows from (50), (55) and (63) that

® €ar

A,{F,} < [max Fll——f;rz112 e 1
1

+ msztx Fy, (82)

where S, is the set of all functions f for which for every #, and
I, between 0 and 1,

[t ~f(t) | <ar (t—1)""".

By (57), the first term in (82) can be made as small as we please
by taking a large enough.. Accordingly, we can prove (L) if we
can show that for every a, the set of functions Z, consisting in
all the functions f in S, for which F,|f]| > 7 can be made to become
null by making » large enough, whatever 7 may be. We shall
prove this by a reductio ad absurdum.

,;) , it may readily be shown that if f is the uniform limit

thatiffi, . . ., fuw . .
' with limit f, and if a summable function ¢ exists such that |fs] <¢
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%, is in the language of Fréchet an extremal set, in that it is
losed, equicontinuous, and uniformly bounded.*®* Hence either

L all the =,’s from a certain stage are null, or there is an element
E. common to every Z,.*® Let this element be f(®). Then for all #,

¥ we have

FulflZm (83)

This however contradicts our hypothesis.

Our operation of taking the average is hence a Daniell integra-

‘ ; tion, and as such capable of the extensions which Daniell develops.

Daniell first proves that if 1<f,< . . . is a sequence from T,

“then the sequence U(f,) is an increasing sequence, and hence

ither becomes positively infinite or has a limit. If then f=limf,
exists, Daniell defines U(f) as lim U(f,), and says that f belongs

~to T:. Our T; will contain all the functions discussed in §9, and
“it admits of an easy proof that the definition of A,{F } in §9

accords with the definition arising from the Daniel extension of

A, whenever the former definition is applicable. Dgniell then
ji  defines for any function f the upper semi-integral U(f) as the
L lower bound of U(g) for g in T: and g>f. He defines U (f) as

—U(—f), and U(f) as U(f) if U(f)= U(f)="finite, f being then

‘called summable. All these extensions are applicable to our

average operator A,, as is also Daniell’s theorem to the effect
. is a sequence of summable functions

for all #, f is summable, lim U(f,) exists and = U(f).

It may be shown from theorems of Daniell that if the measure
of a set of functions be held to be the average of a functional 1
over the set and zero elsewhere, and the outer measure the upper
semi-average of a functional 1 over the set and zero elsewhere,
then the definition in §6 will coincide with this whenever it is

. applicable. §4 may be interpreted as saying that the measure

of the set of functions for which the non-d:fferentiability coefficient
differs from r by more than € is zero, and §7 as saying that the
outer measure of the functions satisfying (51) is less than (55).

19 Sur quelques points du calcul fonctionnel, Rend. Cir. Math. di Palermo

Vol. 22, pp. 7, 37.
20 Ibid, p. 7.
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§11. Independent Linear Functionals. Let us consider a
functional

Fifl=¢( [ Ko J 0wsd),

K and Q being summable of summable square, and ¢ being
bounded and uniformly continuous for all arguments from
— o to . We then have

F(x, . . . ,x,.)=¢(ixk[:1K(x)dx,ixk/;Q(x)d )
T U= 1T =

. . z":fk_lll{(x)dx [;Q(x)dx
=¢{ZxkA_IK(x)dx, i nT - N 2
b ZI[LIK(x)dx]
Xz::xk _’;K(x)dx
i ,_/1_—_11_ K(x)dx f]—_ll Q(x)dx
- " -
Z [ /:_1 K(z)ds
]

1
X K(x)dx ] [
- J

+ 2": xk[ k-lx Q(x)dx —
1 k1

" 1 - iﬁlK(x)dx/;Q(x)dx
=¢[5\J Z[LIK(x)dx]e, £ ! -';_ l o
ST ,\Z[ EK(x)dx]z

and
¢
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[Z ﬁ; K®)dx '/;Q(x)dx )
Z[ /;K(x)dx]’ |

tions. As 7 increases, the

+ 7 i[ élQ(x)de—
\

€ and 7 being two orthogonal unit func
arguments of ¢ approach uniformly

f\l A l[ /: K(x)dx ]’d_\.

/0' 1[ xl K(x)dx f 0(x)dx

' \!/:[fK(x)dx “dx
[ A 1[ / 'K f IQ(x)dx]dx] 2.

'+ ! \ ,A‘l[llg(x)dx]‘l dx =" /o.l[lcl K(x)dx 2dx

: 1 1
If in particular f K(x)dx and / Q(x)dx are normal and

orthogonal,

/ : f ’ cos™ 16, cos™ 26, p(sin 6y, sin 62) d6,do:

aF)= lim 22—
2
f _/ cos™ 16, cos” 26, d6,db,

w L4

2 2

1 00 n _(xﬂ-}- n’)
= ——— dxlf dxge o ¢(xly xZ)-
27t J-w -%
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That is, the average of F with respect to f can be obtained by
first forming the average with respect to f of

#( [xeveas, | 0w@e@ ).

then forming the average of this average with respect to g, and
finally putting f=g. A similar theorem can be shown by the

same means to hold of
1 1
#( [riseas . . .. [ xutwsaz),
1
in case the set of functions[ / K k(x)dx] is normal and orthogonal.

If now ¢ is not a bounded function, but is merely uniformly
continuous over any finite ranges of its arguments, and

”
Zxpt
lk

1 0 o 1
- do . . . | deee” T Play, . . ., %) (85)
(2‘”'2)3 ./; v [oo

exists, it may be proved by a simple limit argument that (85)

represents the average of
1
., f K”(x)f(x)dx)-
0

. .
#( [riwvoras, .
§12. Fourier Coefficients and the Average of a Functional.
The functions

_ 1 _
—4/2 sin n1rx=/ nmV'2 cos nmx
x

form a normal and orthogonal set. Accordingly if we have 2
functional

¢(a;, e, Q)

of the function

f(x)=ao+a1\/5 cos Vax+ . +a, V2 cosnmx +, . . .

DIFFERENTIAL-SPACE

E ts average will be

By

e
A

K

o +a’+ o - -

o
® ® g - x1 Xy

n/.dxl. .. /dx,,e 2"4)(—,. ) ’1?7;) (86)
(2mr?) 2/ - 4
rovided this exists and ¢ is continuous, or even provided ¢ is
sum of step-functions. In particular if Flfx)|=1if an*+ . . .
> a? and zero otherwise, its average will be less
than the average of a functional which is 1 if for some k between
m and n included,

; and zero otherwise. The upper average of this latter functional
¢ is by (86) not greater than
1

for m sufficiently large, where

—s—

L=e(%j-!)§ >1_

Series (87) converges. Hence as m increases, the measure of
the set of functions for which a,*+ . . - 4az2 + . . .>at
approaches zero.

In this demonstration, we have made use of several theoren.ls
of Daniell which it did not seem worth while to enumerate 1n
detail. They may all be found in his discussion of measure and
integration.™

81 Daniell, loc. cit.
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Let us now consider a bounded functional F |fl that is uni-
formly continuous in the more restrictive sense that for any
positive 7, there is a positive § such that

IFIfl=Flgll<n
whenever

1
/o /(&) —g)]%dt < 0.

Let F|f| be invariant, moreover, when a constant is added to f.
It will then be possible to write F|f| in the form

Flfl=¢(alv- N R

where
l¢(al e ey Ay, 0: 0.. ~)-¢(al v oy Ay Ay, .

whenever

n
Zxy?

» 1
. / dr,e 27
-

<M+2max |F|M(9). (87)

where M(6) is the outer measure of all the functions for which
o

i 1a,,,"’_>_0. N can, as we have seen, be made arbitrarily small by
n

making #» sufficient y large. It can hence be shown that

"
Zap?
1

f 1 © o
A F )= lim ﬁ_/ dxy . . / dx,e 2
n— (2mr2)2 /> -0,
%

X1 n
><¢(,,,. = 0,0, )

DIFFERENTIAL-SPACE 173

This theorem may be established for the more general case of f
functional F which is uniformly continuous for all functions a

L for which

Ji U Wi dr<o,

whatever 6 may be, and for which there is an increasing Y (u)
§ such that

Fisl <y [ 1))

> W+ DIM (1) — M ()]

(' converges.

Now let us consider a functional of the form

o B  (nam
Fifl= i vi) . H‘»(r \/5). (89)

where the H's are any set of Hermite polynomials correspond-
ing to normalized Hermite functions. If G|f| is another such
function, it is easy to show that
A {FIfIGIf] } =0, 90)
and to compute
A{FIfl )2 (o1)

Now let us arrange all these functionals in a progression {F, }
" - It follows from theorems analogous to those familiar in the ordi-

nary theory of orthogonal functions that if G|f| is a continuous
function'g of a;, . . . , a, for which expression (86) exists, then

% A FfIGIf] }
R T

converges in the mean to G|f| in the sense that if G,|f]| is its
nth partial sum,

(92)

1

lim A, {GIf|-G,|f| }*=0. (93)
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With the aid of generalizations of familiar theorems concerning
orthogonal functions, it may be shown that this result remains
valid if {G|f|}? fulfils the conditions laid down for F in (88),
and G does likewise. The functionals (89) are then in a certain
sense a complete set of normal and orthogonal functions.

One final remark. By methods which exactly duplicate §4,

it can be shown that the set of functions f for which it is not true
that

r? kgl
= — 1
? n—l?:olz w <€ (94)

is of zero measure, whatever €. This suggests interesting questions
relating to the connection between the coefficient of non-differ-

. i kza,f
entiability of a function and lim z .
1

n—s00 n




